1. Votsi, I., Gayraud, G., Barbu, V. & Limnios, N. (2021)
Hypotheses testing and posterior concentration rates for semi-Markov processes, Stat. Inference Stoch. Process, doi: 10.1007/s11203-021-09247-3.
2. Brouste, A., Soltane, M. & Votsi, I. (2020)
One-step estimation for the fractional Gaussian noise at high-frequency, ESAIM: Probability and Statistics, 24, 827-841.
3. Votsi, I. (2019)
Conditional failure rates for semi-Markov chains, J Appl Stat, doi: 10.1080/02664763.2019.1610164.
4. Votsi, I. & Brouste, A. (2019)
Confidence intervals for risk indicators in semi-Markov models: an application to wind energy production, J Appl Stat, doi: 10.1080/02664763.2019.1566449.
5. Koutroumpas, K., Ballarini, P., Votsi, I. & Cournède, P.-H. (2016)
Bayesian parameter estimation for the Wnt pathway: An infinite mixture models approach, Bioinformatics, 32 (17), i781-i789.
6. Hem, S., Ly, S., Votsi, I. et al. (2016)
Estimating the burden of leptospirosis among febrile subjects aged below 20 years in Kampong Cham communities Cambodia, 2007-2009, PLoS One, 11(4): e0151555.
7. Votsi, I. & Limnios, N. (2015)
Estimation of the intensity of hitting time for semi-Markov chains and hidden Markov renewal chains, Journal of Nonparametric Statistics, 27 (2), 149-166.
8. Votsi, I., Limnios, N., Tsaklidis, G. & Papadimitriou, E. (2014)
Hidden semi-Markov modeling for the estimation of earthquake occurrence rates, Communications in Statistics: Theory and Methods, 43, 1484-1502.
9. Votsi, I., Limnios, N., Tsaklidis, G. & Papadimitriou, E. (2013)
Hidden Markov models revealing the stress field underlying the earthquake generation, Physica A: Statistical Mechanics and its Applications, 392, 2868-2885.
10. Votsi, I., Limnios, N., Tsaklidis, G. & Papadimitriou, E. (2012)
Estimation of the expected number of earthquake occurrences based on semi-Markov models, Methodology and Computing in Applied Probability, 14 (3), 685-703.
11. Votsi, I., Tsaklidis, G. & Papadimitriou, E. (2011)
Seismic hazard assessment in central Ionian islands area (Greece) based on stress release models, Acta Geophysica, 59 (4), 701-727.
1. Reliability indicators for semi-Markov models: the case of multiple trajectories, with A.Brouste.
2. One-step MLE for the autoregressive Markov switching model, with A.Brouste & F.Karamé.
3. Hypothesis testing for semi-Markov processes in a parametric context, with C.Farinetto.
Votsi, I., Limnios, N., Papadimitriou, E. & Tsaklidis, G. (2018)
Earthquake statistical analysis through multistate modeling, Mathematics and Statistics Series, Wiley-ISTE, ISBN: 978-1-119-57908-3, 180 p.
Votsi, I. (2018)
Reliability indicators for hidden Markov renewal models, Reliability Engineering: Theory and Applications, edited by Vonta, I. and Ram, M., Boca Raton: CRC Press.
Votsi, I. & Cournède, P.-H. (2016)
A data augmentation scheme embedding a sequential Monte-Carlo method for bayesian parameter inference in state space models, 48èmes Journées de Statistique de la SFdS.
Georgiadis, S., Limnios, N. & Votsi, I. (2013)
Reliability and probability of first occurred failure for discrete-time semi-Markov systems, Applied Reliability Engineering and Risk Analysis: Probabilistic Models and Statistical Inference, Wiley, DOI: 10.1002/9781118701881.ch12.